Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 6065-6071, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569047

RESUMO

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Assuntos
Nanopartículas Metálicas , Dióxido de Silício , Ouro , Corantes Fluorescentes , Imunoensaio/métodos , Coloide de Ouro
2.
Anal Methods ; 16(16): 2597-2605, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38618693

RESUMO

The highly infectious characteristics of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the necessity of sensitive and rapid nucleocapsid (N) protein-based antigen testing for early triage and epidemic management. In this study, a colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) platform for the rapid and sensitive detection of the SARS-CoV-2 N protein was developed based on gold nanorods (GNRs), which possessed tunable local surface plasma resonance (LSPR) absorption peaks from UV-visible to near-infrared (NIR). The LSPR peak was adjusted to match the NIR emission laser 808 nm by controlling the length-to-diameter ratio, which could maximize the photothermal conversion efficiency and achieve photothermal detection signal amplification. Qualitative detection of SARS-CoV-2 N protein was achieved by observing the strip color, and the limit of detection was 2 ng mL-1, while that for photothermal detection was 0.096 ng mL-1. Artificial saliva samples spiked with the N protein were analyzed with the recoveries ranging from 84.38% to 107.72%. The intra-assay and inter-assay coefficients of variation were 6.76% and 10.39%, respectively. We further evaluated the reliability of this platform by detecting 40 clinical samples collected from nasal swabs, and the results matched well with that of nucleic acid detection (87.5%). This method shows great promise in early disease diagnosis and screening.


Assuntos
COVID-19 , Colorimetria , Proteínas do Nucleocapsídeo de Coronavírus , Ouro , Nanotubos , SARS-CoV-2 , Ouro/química , Nanotubos/química , SARS-CoV-2/imunologia , Colorimetria/métodos , Humanos , COVID-19/diagnóstico , Imunoensaio/métodos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Limite de Detecção , Raios Infravermelhos , Fosfoproteínas/análise , Fosfoproteínas/química , Fosfoproteínas/imunologia
3.
ACS Sens ; 9(3): 1310-1320, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38390684

RESUMO

The sensitivity of chemiresistive gas sensors based on metal oxide semiconductors (MOSs) has been inherently affected by ambient humidity because their reactive oxygen species are easily hydroxylated by water molecules, which significantly reduces the accuracy of the gas sensors in food quality assessment. Although conventional metal organic frameworks (MOFs) can serve as coatings for MOSs for humidity-independent gas detection, they have to operate at high working temperatures due to their low or nonconductivity, resulting in high power consumption, significant manufacturing inconvenience, and short-term stability due to the oxidation of MOFs. Here, the conductive and thickness-controlled CuHHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene)-coated Cu2O are developed by combining in situ etching and layer-by-layer liquid-phase growth method, which achieves humidity-independent detection of H2S at room temperature. The response to H2S only decreases by 2.6% below 75% relative humidity (RH), showing a 9.6-fold improvement than the bare Cu2O sensor, which is ascribed to the fact that the CuHHTP layer hinders the adsorption of water molecules. Finally, a portable alarm system is developed to monitor food quality by tracking released H2S. Compared with gas chromatography method, their relative error is within 9.4%, indicating a great potential for food quality assessment.


Assuntos
Sulfeto de Hidrogênio , Estruturas Metalorgânicas , Umidade , Qualidade dos Alimentos , Óxidos , Água
4.
Anal Chem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317503

RESUMO

Lateral flow immunoassay (LFIA) has played a vital role in point-of-care (POC) testing on account of its simplicity, rapidity, and low cost. However, the low sensitivity and difficulty of quantitation limit its further development. Sensitive markers with new detection modes are being developed to dramatically improve LFIA's performance. Herein, a ligand-complex approach was proposed to uniformly coat a thin layer of Au onto Ag triangular nanoplates (Ag TNPs) without etching the Ag cores, which not only retain the unique optical properties from Ag TNPs but also acquire the surface stability and biocompatibility of gold. The localized surface plasmon resonance absorption of these Ag@Au TNPs could be finely adjusted from visible (550 nm) to the second near-infrared region (NIR-II) (1100 nm), and even longer, by simply adjusting the ratio between edge length and thickness. Utilizing the Ag@Au TNPs as new markers for LFIA, a highly sensitive colorimetric and photothermal dual-mode detection of the SARS-CoV-2 nucleocapsid protein was achieved with a very low background. The Ag@Au TNPs showed an exceedingly high photothermal conversion efficiency of 61.4% (ca. 2 times higher than that of Au nanorods), endowing the LFIA method with a low photothermal detection limit (40 pg/mL), which was 25-fold lower than that of the colorimetric results. The generality of the method was further verified by the sensitive and accurate analysis of cardiac troponin I (cTnI). This method is robust, reproducible, and highly specific and has been successfully applied to SARS-COV-2 detection in 35 clinical samples with satisfactory results, demonstrating its potential for POC applications.

5.
Anal Chim Acta ; 1292: 342241, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309851

RESUMO

In addition to confirming virus infection, quantitative identification of the antibodies to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) also evaluates persons immunity to guide personal protection. However, portable assays for fast and accurate quantification of SARS-CoV-2 antibodies remain challenging. In this work, we synthesized Au@Pt star-like nanoparticles (NPs) quickly and easily by a one-pot wet-chemical approach, allowing the stellate Au core to be partially decorated by Pt nanoshells. The nanoparticles were used as probe in a lateral flow immunoassay (LFIA) that operated in both colorimetric and photothermal dual modes, which could detect the antibodies to the SARS-CoV-2 nucleocapsid (N) protein with high sensitivity. Due to the sharp tips on the external region of nanostars and surface plasmon coupling effect between the Au core and Pt shell, the NIR absorption capacity and photothermal performance of these NPs were exceptional. Under optimal conditions, the colorimetric mode's detection limit for SARS-CoV-2 N protein antibody was 1 ng mL-1, which is significantly lower by 2-order of magnitude compared to commercially available colloidal gold strips. And the detection limit for the photothermal mode was as low as 24.91 pg mL-1, which was approximately 40-fold more sensitive than colorimetric detection. Moreover, the method demonstrated favorable specificity, reproducibility and stability. Finally, the approach was employed for the successful identification of actual serum samples. Therefore, the dual-mode LFIA can be applied for screening and tracking the early immunological reaction to SARS-CoV-2, and it has great promise for clinical application.


Assuntos
COVID-19 , Nanopartículas Metálicas , Nanoconchas , Humanos , SARS-CoV-2 , Colorimetria , Reprodutibilidade dos Testes , COVID-19/diagnóstico , Anticorpos Antivirais , Imunoensaio , Nucleocapsídeo
6.
Biosens Bioelectron ; 241: 115688, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714062

RESUMO

Traditional lateral flow immunoassays (LFIA) suffer from insufficient sensitivity, difficulty for quantitation, and susceptibility to complex substrates, limiting their practical application. Herein, we developed a polyethylenimine (PEI)-mediated approach for assembling high-density Au nanoshells onto Fe3O4 nanoclusters (MagAushell) as LFIA labels for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein (N protein). PEI layer served not only as "binders" to Fe3O4 nanoclusters and Au nanoshells, but also "barriers" to ambient environment. Thus, MagAushell not only combined magnetic and photothermal properties, but also showed good stability. With MagAushell, N protein was first separated and enriched from complex samples, and then loaded to the strip for detection. By observation of the color stripes, qualitative detection was performed with naked eye, and by measuring the temperature change under laser irradiation, quantification was attained free of sophisticated instruments. The introduction of Fe3O4 nanoclusters facilitated target purification and enrichment before LFIA, which greatly improved the anti-interference ability and increased the detection sensitivity by 2 orders compared with those without enrichment. Moreover, the high loading density of Au nanoshells on one Fe3O4 nanocluster enhanced the photothermal signal of the nanoprobe significantly, which could further increase the detection sensitivity. The photothermal detection limit reached 43.64 pg/mL which was 1000 times lower than colloidal gold strips. Moreover, this method was successfully applied to real samples, showing great application potential in practice. We envision that this LFIA could serve not only for SARS-CoV-2 detection but also as a general test platform for other biotargets in clinical samples.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Nanoconchas , Humanos , SARS-CoV-2 , Colorimetria , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo , Imunoensaio , Nanopartículas Metálicas/química
7.
Anal Chem ; 95(39): 14516-14520, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37672313

RESUMO

Although nanozymes with intrinsic enzyme-like characteristics have aroused great interest in the biosensing field, the challenge is to keep high enzyme-like activity of the nanozyme after the modification of biomolecules onto nanozymes. Herein, a functional zonation strategy of a heterodimer nanozyme was proposed to tackle the challenge and further construct a multiple chemiluminescence (CL) imaging immunoassay. Here Fe3O4-Au as a heterodimer nanozyme model was divided into two zones, in which Fe3O4 nanoparticles (NPs) were regarded as a nanozyme zone and AuNPs were defined as an antibody immobilization zone. A signal amplification probe (Fe3O4-Au-Ab2) was prepared by modifying the secondary antibody (Ab2) on AuNPs of the Fe3O4-Au heterodimer owing to the Au-S bond. The exposed Fe3O4 of the Fe3O4-Au-Ab2 probe shows very high peroxidase-like activity and can efficiently catalyze H2O2-luminol to produce strong CL imaging signals for multiple antigens detection. Using chicken interleukin-4 (ChIL-4) and chicken gamma interferon (ChIFN-γ) as models, the proposed CL imaging immunoassay shows wide linear ranges (0.005-0.10 ng/mL for both ChIL-4 and ChIFN-γ) and low detection limits (0.58 pg/mL for ChIL-4, 0.47 pg/mL for ChIFN-γ) with the characteristics of high sensitivity, high specificity, and good stability. This work provides a promising functional zonation concept for nanozymes to construct new types of nanozyme probes for immunoassay of multiple biomolecules.

8.
Anal Chem ; 95(30): 11316-11325, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37402321

RESUMO

Although the traditional enzyme-linked immunosorbent assay (ELISA) has been widely applied in pathogen detection and clinical diagnostics, it always suffers from complex procedures, a long incubation time, unsatisfying sensitivity, and a single signal readout. Here, we developed a simple, rapid, and ultrasensitive platform for dual-mode pathogen detection based on a multifunctional nanoprobe integrated with a capillary ELISA (CLISA) platform. The novel capture antibodies-modified capillaries can act as a swab to combine in situ trace sampling and detection procedures, eliminating the dissociation between sampling and detection in traditional ELISA assays. With excellent photothermal and peroxidase-like activity, the Fe3O4@MoS2 nanoprobe with a unique p-n heterojunction was chosen as an enzyme substitute and amplified signal tag to label the detection antibody for further sandwich immune sensing. As the analyte concentration increased, the Fe3O4@MoS2 probe could generate dual-mode signals, including remarkable color changes from the chromogenic substrate oxidation as well as photothermal enhancement. Moreover, to avoid false negative results, the excellent magnetic capability of the Fe3O4@MoS2 probe can be used to pre-enrich the trace analytes, amplifying the detection signal and enhancing the immunoassay's sensitivity. Under optimal conditions, specific and rapid detection of SARS-CoV-2 has been realized successfully based on this integrated nanoprobe-enhanced CLISA platform. The detection limits were 5.41 pg·mL-1 for the photothermal assay and 150 pg·mL-1 for the visual colorimetric assay. More importantly, the simple, affordable, and portable platform can also be expanded to rapidly detect other targets such as Staphylococcus aureus and Salmonella typhimurium in practical samples, making it a universal and attractive tool for multiple pathogen analysis and clinical testing in the post COVID-19 era.


Assuntos
COVID-19 , Capilares , Humanos , Molibdênio , COVID-19/diagnóstico , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos
9.
Environ Sci Technol ; 57(30): 11231-11240, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467161

RESUMO

Current methods for evaluating catalytic degradation reactions of environmental pollutants primarily rely on chromatography that often suffers from intermittent analysis, a long turnaround period, and complex sample pretreatment. Herein, we propose a quantitative time-resolved visualization method to evaluate the progress of catalytic degradation reactions by integrating sample pretreatment [single-drop microextraction, (SDME)], fluorescence sensing, and a smartphone detection platform. The dechlorination reaction of chlorobenzene derivatives was first investigated to validate the feasibility of this approach, in which SDME plays a critical role in direct sample pretreatment, and inorganic CsPbBr3 perovskite encapsulated in a metal-organic framework (MOF-5) was utilized as the fluorescent chromogenic agent (FLCA) in SDME to realize fast in situ colorimetric detection via the color switching from green (CsPbBr3) to blue (chlorine lead bromide, inorganic CsPbCl3 perovskite). The smartphone, which can calculate the B/G value of FLCA, serves as a data output window for quantitative time-resolved visualization. Further, a [Eu(PMA)]n (PMA= pyromellitic acid) fluorescent probe was constructed to use as an FLCA for the in situ evaluation of cinnamaldehyde and p-nitrophenol catalytic reduction. This approach not only minimizes the utilization of organic solvents and achieves quantitively efficient time-resolved visualization but also provides a feasible method for in situ monitoring of the progress of catalytic degradation reactions.


Assuntos
Poluentes Ambientais , Fluorescência , Óxidos , Solventes
10.
Anal Chim Acta ; 1255: 341102, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37032051

RESUMO

Although many approaches have been developed for the quick assessment of SARS-CoV-2 infection, few of them are devoted to the detection of the neutralizing antibody, which is essential for assessing the effectiveness of vaccines. Herein, we developed a tri-mode lateral flow immunoassay (LFIA) platform based on gold-silver alloy hollow nanoshells (Au-Ag HNSs) for the sensitive and accurate quantification of neutralizing antibodies. By tuning the shell-to-core ratio, the surface plasmon resonance (SPR) absorption band of the Au-Ag HNSs is located within the near infrared (NIR) region, endowing them with an excellent photothermal effect under the irradiation of optical maser at 808 nm. Further, the Raman reporter molecule 4-mercaptobenzoic acid (MBA) was immobilized on the gold-silver alloy nanoshell to obtain an enhanced SERS signal. Thus, these Au-Ag HNSs could provide colorimetric, photothermal and SERS signals, with which, tri-mode strips for SARS-CoV-2 neutralizing antibody detection were constructed by competitive immunoassay. Since these three kinds of signals could complement one another, a more accurate detection was achieved. The tri-mode LFIA achieved a quantitative detection with detection limit of 20 ng/mL. Moreover, it also successfully detected the serum samples from 98 vaccinated volunteers with 79 positive results, exhibiting great application value in neutralizing antibody detection.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Imunoensaio , Nanoconchas , SARS-CoV-2 , Análise Espectral Raman , Humanos , Ligas , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Colorimetria/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Ouro , Imunoensaio/instrumentação , Imunoensaio/métodos , Nanopartículas Metálicas , SARS-CoV-2/imunologia , Prata , Análise Espectral Raman/métodos
11.
Talanta ; 256: 124271, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681038

RESUMO

Rapid screening of multiple pathogens will greatly improve the efficiency of pandemic prevention and control. Colorimetric methods exhibit the advantages of convenience, portability, low cost, time efficiency, and free of sophisticated instruments, yet usually have difficulties in simultaneous detection and suffer from monotonous color changes with low visual resolution and sensitivity. Hence, coupled three kinds of plasmonic nanoparticles (NPs) with magnetic separation, we developed an achromatic colorimetric nanosensor with highly enhanced visual resolution for simultaneous detection of SARS-CoV-2, Staphylococcus aureus, and Salmonella typhimurium. The achromatic nanosensor was composed of SARS-CoV-2-targeting red gold NPs, S. aureus-targeting yellow silver NPs and S. typhimurium-targeting blue silver triangle NPs mixed as black color. In the detection, three corresponding magnetic probes were added into the above mixture. In the presence of a target pathogen, it would be recognized and combined with corresponding colored reporters and magnetic probes to form sandwich complexes, which were removed by magnetic separation, and the sensor changed from black to a chromatic color (the color of the reporters remained in supernatant). Consequently, different target pathogen induced different color. For example, SARS-CoV-2, S. aureus, and S. typhimurium respectively produced green, purple, and orange. While coexistence of S. aureus and S. typhimurium produced red, and coexistence of S. aureus and SARS-CoV-2 produced blue, etc. Therefore, by observing the color change or measuring the absorption spectra, multiple pathogen detection was achieved conveniently. Compared with most colorimetric sensors, this achromatic nanosensor involved rich color change, thus significantly enhancing visual resolution and inspection sensitivity. Therefore, this sensor opened a promising avenue for efficient monitoring and early warning of food safety and quality.


Assuntos
COVID-19 , Nanopartículas Metálicas , Nanopartículas , Humanos , Prata , Colorimetria/métodos , Staphylococcus aureus , COVID-19/diagnóstico , SARS-CoV-2 , Ouro , Fenômenos Magnéticos
12.
Mikrochim Acta ; 190(2): 57, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652031

RESUMO

Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA.


Assuntos
Nanopartículas Metálicas , Nanopartículas Multifuncionais , Salmonella typhimurium , Colorimetria , Reprodutibilidade dos Testes , Imunoensaio
13.
Anal Chem ; 95(5): 3037-3044, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693785

RESUMO

Effective identification of multiple pathogenic bacteria in unknown samples is important for disease prevention and control but remains a challenge yet. A single-mode array-based sensing approach is simple and sensitive, but it usually relies on the use of multiple cross-reactive receptors to construct sensor arrays, which is cumbersome and insufficiently accurate. Here, we developed a sensor array with colorimetric and photothermal dual mode of differentiating multiple pathogenic bacteria. The sensor array was based on boronic acid-functionalized Au-Fe3O4 nanoparticles (BA-GMNPs), which not only possess localized surface plasmon resonance properties, showing a burgundy color similar to that of AuNPs, but also exhibit mild superparamagnetism, allowing for the differentiation of bacteria before and after binding to the nanoparticles. Immobilization of BA-GMNPs on the bacterial cell surface by covalent bonding would diminish NaCl-induced assembly of BA-GMNPs. Different BA-GMNPs@bacterial complexes differed in their ability to resist assembly and produced different colorimetric and photothermal response signals. A unique molecular fingerprint of each bacterium was obtained by linear discriminant analysis of the response patterns, demonstrating an effective differentiation among the six species studied. Compared with single-mode sensing arrays based on multiple receptors, this method only requires the preparation of a single nanomaterial, which produces two signal outputs for the identification of multiple bacteria with better differentiation. It can distinguish not only multiple pathogenic bacteria but also Gram-negative and Gram-positive bacteria, and, more importantly, it can perform preliminary discrimination of unknown samples.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Colorimetria/métodos , Nanopartículas Metálicas/química , Ouro/química , Bactérias
14.
Anal Bioanal Chem ; 415(4): 545-554, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414739

RESUMO

Serological antibody tests are useful complements of nuclei acid detection for SARS-CoV-2 diagnosis, which can significantly improve diagnostic accuracy. However, antibody detection in serum or plasma remains challenging to do with high sensitivity. In this study, Ag nanoparticles with ultra-thin Au shells embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured and then assembled onto Fe3O4 surface by electrostatic interaction to construct the Fe3O4-AgMBA@Au nanoparticles (NPs) with magnetic-Raman-colorimetric properties. Based on the composite nanoparticles, a colorimetric and Raman dual-mode lateral flow immunoassay (LFIA) for ultrasensitive identification of SARS-CoV-2 nucleocapsid (N) protein antibody was constructed. The magnetic nanoparticles (Fe3O4 NPs) were acted as the core and coated a layer of AgMBA@Au particles on the surface by electrostatic interaction to prepare Fe3O4-AgMBA@Au NPs, which can amplify the SERS signal due to multiple AgMBA@Au particles concentrated on a single magnetic nanoparticle. Moreover, the Fe3O4-AgMBA@Au NPs facilitated pre-purifying sample using magnetic separation, and complex matrix interference would be greatly decreased in the detection. The Fe3O4-AgMBA@Au NPs modified with N protein recognized and bound with N protein antibodies, which were trapped on the T-line, forming color band for observing detection. Under optimal conditions, the N protein antibodies could be qualitatively detected in colorimetric mode with the visual limit of 10-8 mg/mL and quantitatively detected by SERS signals between 10-6 and 10-10 mg /mL with 0.08 pg/mL detection limit. The coefficients variations (CV) of intra-assay was 8.0%, whereas of inter-assay was 11.7%, confirming of good reproducibility. Finally, this approach was able to discriminate between positive, negative, and weakly positive samples when detecting 107 clinical serum samples. The process enables highly sensitive quantitative assays that are valuable for evaluating disease processes and guiding treatment. Colorimetric and Raman dual-mode LFIA detection of SARS-CoV-2 N protein antibody based on Fe3O4-AgMBA@Au nanoparticles.


Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Ouro , Nanopartículas Metálicas , SARS-CoV-2 , Prata , Humanos , Colorimetria , COVID-19/diagnóstico , Teste para COVID-19 , Imunoensaio , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , Análise Espectral Raman , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Anticorpos Antivirais/análise
15.
Biosens Bioelectron ; 223: 115022, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563527

RESUMO

Carbon monoxide (CO) is not only a highly poisonous gas that brings great health risk, but also a significant signaling molecule in body. However, it is still challengeable for development of alternative colorimetric probes to traditional organic chromophores for simple, sensitive and convenient CO sensing. Here, for the first time, we rationally design a novel hydrophilic AgPt-Fe3O4 nanozyme with a unique heterodimeric nanostructure for colorimetric sensing of CO based on the excellent peroxidase-like catalytic activity as well as highly poisonous effect of CO on the nanozyme's catalytic activity. Both experimental evidence and theoretical calculations reveal the trimetallic AgPt-Fe3O4 nanozyme is susceptible to poisoning with the strongest affinity towards CO compared to individual Fe3O4 or Ag-Fe3O4, which is attributed to the adequate exposure of the active metallic sites and efficient interfacial synergy of unique heterodimeric nanostructure. Accordingly, a novel nanozyme-based colorimetric strategy is developed for CO detection with a low detection limit of 5.6 ppb in solution. Furthermore, the probe can be prepared as very convenient test strips and integrated with the portable smartphone platforms for detecting CO gas samples with a low detection limit of 8.9 ppm. Overall, our work proposes guidelines for the rational design of metallic heterogeneous nanostructure to expand the analytical application of nanozyme.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Colorimetria , Peroxidase/química , Peroxidases , Nanoestruturas/química
16.
Se Pu ; 40(11): 1031-1038, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36351812

RESUMO

Pomelo peel, as a by-product of pomelo consumption, is rich in various fiber and functional compounds. The utilization of the valuable components found in pomelo peel may mitigate environmental concerns. In this study, pomelo peel rich in lignin and oxygen-containing functional groups was used to prepare pomelo peel biochar (PPB) via temperature-programmed pyrolysis at different temperatures (800 ℃ and 1000 ℃). Their structures were investigated by N2 adsorption-desorption isotherms and BJH pore size distribution. The results showed that PPB1000 (pomelo peel biochar prepared at 1000 ℃) had a higher specific surface area (749.9 m2/g), larger pore volume (0.42 cm3/g), more concentrated pore size distribution (2-3 nm), and better adsorption performance than commercial activated carbon. PPB1000 exhibited excellent capability to capture benzenes (BTEX, including benzene (B), toluene (T), ethylbenzene (E), and xylene (X)) through hydrogen bonds, π-π, and electrostatic interactions. Additionally, their honeycomb porous structure could provide additional adsorption sites and material transport paths. PPB1000 was coated on iron wire using the sol-gel method to prepare chemically and mechanically stable solid phase microextraction (SPME) fibers. By combining PPB1000-based SPME analysis with gas chromatography-flame ionization detection (GC-FID), an effective method was developed for the extraction and determination of BTEX. The optimized method had low LODs (0.004-0.032 µg/L), wide linear range (1-100 µg/L), and good linear relationship (determination coefficients, r2≥0.9919). The RSDs of the intra-batch (n=6) and inter-batch (n=5) precisions were 1.04%-6.56% and 1.03%-12.42%, respectively. The method validation results showed that PPB1000 had good stability. Compared with the commercial reagent polydimethylsiloxane (7 µm), PPB1000 had a higher extraction efficiency. When applied to the analysis of BTEX in natural water samples, trace levels of ethylbenzene (4.80 µg/L), o-xylene (3. 00 µg/L), and m-xylene and p-xylene (2.46 µg/L) were detected. Recovery tests were performed to validate the reliability of the method, and recoveries were between 75.7% and 117.6%. This effective pretreatment process combined with GC-FID could realize the rapid detection of BTEX and is promising for the analysis of BTEX in complex matrixes in the future.


Assuntos
Benzeno , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Benzeno/análise , Carvão Vegetal , Rios/química , Reprodutibilidade dos Testes , Água/análise
17.
RSC Adv ; 12(38): 25106-25111, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36199878

RESUMO

Sensing temperature (T) has gained great attention since T is the most important parameter in daily life, scientific research and industry. A ratiometric fluorescence T sensor is fabricated by doping MAPbBr3 perovskite nanocrystals (PNCs) and rhodamine B (RhB) into a polyacrylonitrile (PAN) matrix and the composite materials are electrospun into optical fibers. The fibers show characteristic emissions at 521 and 587 nm under UV irradiation (λ ex = 365 nm). Both emission intensities gradually increased with elevating T, accompanied with a fluorescence color change from green to yellow. There is a linear relationship between fluorescence intensity ratio (I 521/I 587) and T in the range of 30-45 °C. The T response sensitivity is as high as 4.38% °C-1 at 45 °C.

18.
Nanoscale ; 14(46): 17222-17229, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250272

RESUMO

Perovskite nanocrystals (PNCs) have attracted widespread attention as promising materials for the optoelectronic field due to their remarkable photophysical properties and structural tunability. However, their poor stability and the use of toxic organic solvents in the preparation process have severely restricted their practical applications. Herein, a facile, rapid and toxic organic solvent-free synthesis strategy of CsPbBr3 PNCs was developed for the first time via the ligand-assisted reprecipitation (LARP) method using natural deep eutectic solvents (NADESs) as solvents and surface ligands. In this method, the NADESs not only functioned as solvents for green synthesis, but also served simultaneously as surface ligands of CsPbBr3 PNCs to significantly improve their optical properties and stability. The as-synthesized CsPbBr3 PNCs exhibited high photoluminescence quantum yield (PLQY, ∼96.8%), narrow full width at half-maximum (FWHM, ∼18.8 nm) and a high stability that retained 82.9% of PL intensity after 70 days. This work provides a new strategy for the green synthesis of PNCs, which promises feasibility for the industrial large-scale synthesis of high-quality PNCs.

19.
Anal Chem ; 94(23): 8466-8473, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35657150

RESUMO

Immunoglobulin detection is essential for diagnosing progression of SARS-CoV-2 infection, for which SARS-CoV-2 IgG is one of the most important indexes. In this paper, Ag nanoparticles with ultrathin Au shells (∼2 nm) embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured via a ligand-assisted epitaxial growth method and integrated into lateral flow immunoassay (LFIA) for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. AgMBA@Au possessed not only the surface chemistry advantages of Au but also the superior optical characteristics of Ag. Moreover, the nanogap between the Ag core and the Au shell also greatly enhanced the Raman signal. After being modified with anti-human antibodies, AgMBA@Au recognized and combined with SARS-CoV-2 IgG, which was captured by the SARS-CoV-2 spike protein on the T line. Qualitative analysis was achieved by visually observing the color of the T line, and quantitative analysis was conducted by measuring the SERS signal with a sensitivity four orders of magnitude higher (detection limit: 0.22 pg/mL). The intra-assay and inter-assay variation coefficients were 7.7 and 10.3%, respectively, and other proteins at concentrations of 10 to 20 times higher than those of SARS-CoV-2 IgG could hardly produce distinguishable signals, confirming good reproducibility and specificity. Finally, this method was used to detect 107 clinical serum samples. The results agreed well with those obtained from enzyme-linked immunosorbent assay kits and were significantly better than those of the colloidal gold test strips. Therefore, this dual-mode LFIA has great potential in clinical practical applications and can be used to screen and trace the early immune response of SARS-CoV-2.


Assuntos
COVID-19 , Nanopartículas Metálicas , Anticorpos Antivirais , COVID-19/diagnóstico , Colorimetria , Humanos , Imunoensaio/métodos , Imunoglobulina G , Reprodutibilidade dos Testes , SARS-CoV-2 , Prata , Análise Espectral Raman/métodos , Glicoproteína da Espícula de Coronavírus
20.
ACS Appl Mater Interfaces ; 14(21): 24610-24619, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604024

RESUMO

The gas sensing performance of metal oxides is limited by the lack of conductivity and sensing activity. Inducing the release of more electrons and activating more chemisorbed oxygen ions to participate in the gas sensing reaction can effectively overcome this limitation. The development of a PbMoO4/MoO3 heterostructure prepared by the addition of Pb2+ ions with MoO3 nanorods is reported for highly sensitive and selective trimethylamine (TMA) detection. The response of the PbMoO4/MoO3 sensor (33.2) to 10 ppm TMA is improved 3-fold compared to the MoO3 sensor (10.7), and the working temperature is reduced from 170 to 133 °C. The enhanced gas sensing performance and mechanism of PbMoO4/MoO3 were demonstrated using the energy band diagram and X-ray photoelectron spectroscopy (XPS) analysis. It is mainly attributed to the following promotion: (1) the induction of Pb2+ ions increases the electron density around the Mo element, enabling the decorated MoO3 to release electrons easily; (2) the formed PbMoO4/MoO3 heterojunction endows a high degree of electron transfer at the interface; (3) the formation of the potential barrier causes the device resistance to decrease significantly upon TMA exposure. Finally, the practicability of the sensor was verified by detecting TMA released from Carassius auratus and shrimp to reflect their freshness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...